На правах рукописи

EXanp

Харин Евгений Васильевич

# ВЛИЯНИЕ СТРУКТУРЫ И ФАЗОВОГО СОСТАВА НА СТАТИЧЕСКИЕ МАГНИТНЫЕ СВОЙСТВА НАНОКРИСТАЛЛИЧЕСКИХ ПЛЁНОК СИСТЕМЫ Fe-Zr-N

05.16.01 Металловедение и термическая обработка металлов и сплавов

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание учёной степени

кандидата технических наук

Москва - 2016

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институт металлургии и материаловедения имени А.А. Байкова Российской академии наук (ИМЕТ РАН)

| Научный руководитель:<br>Доктор технических наук, профессор,<br>главный научный сотрудник ИМЕТ РАН                                                                                      | Шефтель Елена Наумовна         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Официальные оппоненты:<br>Доктор физико-математических наук,<br>Профессор кафедры Магнетизма,<br>Физический факультет, Московский<br>государственный университет<br>им. М.В. Ломоносова | Грановский Александр Борисович |
| Кандидат технических наук,<br>Доцент кафедры Физического                                                                                                                                | Щетинин Игорь Викторович       |

Ведущая организация: Федеральное государственное бюджетное учреждение науки Институт теоретической и прикладной электродинамики Российской академии наук (ИТПЭ РАН)

Защита состоится <u>«22» декабря 2016 г.</u> в <u>14:00</u> часов на заседании

диссертационного совета Д 002.060.01 в ИМЕТ РАН по адресу: 119991, Москва, Ленинский проспект, 49.

С диссертацией можно ознакомиться в библиотеке ИМЕТ РАН и на сайте ИМЕТ РАН http://www.imet.ac.ru. Автореферат диссертации размещен на сайте ИМЕТ РАН http://www.imet.ac.ru и на сайте ВАК http://vak.ed.gov.ru.

Автореферат разослан « » октября 2016 г.

материаловедения, Заведующий Учебнонаучной лабораторией «Центр рентгеноструктурных исследований и диагностики

материалов», НИТУ «МИСиС»

Ученый секретарь диссертационного совета, доктор технических наук, профессор

122-

В. М. Блинов

# ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. В настоящее время магнитно-мягкие материалы используют в системах хранения информации, ориентации и перемещения объектов, телекоммуникационных системах, а также их применяют в датчиках магнитного поля, магнитопроводах, полюсных наконечниках в головках для магнитной записи и др. изделиях. Основными тенденциями их развития являются миниатюризация устройств, быстродействие и повышение чувствительности к слабым магнитным полям. Это требует от магнитномягких материалов наличия комплекса физических свойств, среди которых низкая коэрцитивная сила и высокая магнитная проницаемость в широком интервале частот, максимально возможная индукция насыщения, заданная гистерезиса, термическая стабильность форма магнитного свойств. повышенное электросопротивление, высокая твердость и др. свойства.

Нанокристаллические магнитно-мягкие сплавы способны сочетать в себе часть или все вышеперечисленные свойства. Основным отличием магнитной структуры нанокристаллических магнитно-мягких материалов от микрокристаллических является то, что в них размер ферромагнитного зерна меньше длины ферромагнитного обменного взаимодействия. Это явление, описанное в модели случайной магнитной анизотропии (МСМА), приводит к снижению эффективной магнитной анизотропии (в некоторых случаях – на несколько порядков) и, в рамках существующих моделей магнитного гистерезиса, к экстремальному уменьшению коэрцитивной силы [1].

МСМА и родственные ей теоретические модели рассматривают энергию магнитной анизотропии как эффективную величину, при этом отсутствуют представления о закономерностях влияния химического состава и структуры. Влияние каждого из параметров рассмотрено в литературе независимо от других и независимо от МСМА.

Следует отметить, что МСМА зачастую для простоты рассматривает эффективную локальную магнитную анизотропию тождественной магнитокристаллической анизотропии (МКА), что является определённым допущением, т.к. кроме МКА в материале всегда существует магнитоупругая магнитострикции, микродеформаций анизотропия (вследствие Kme И макронапряжений) могут существовать другие виды магнитной И анизотропии (магнитостатическая  $K_{ms}$ , поверхностная  $K_{a,s}$ , наведённая  $K_{\mu}$ ).

МКА и магнитострикция являются неотъемлемыми свойствами каждой ферромагнитной фазы и зависят, в частности, от химического состава фазы. Магнитостатическая и поверхностная анизотропии возникают из-за наличия В материале немагнитных фаз или фаз с разными величинами намагниченностей насыщения, имеющими поверхности раздела с основной ферромагнитной фазой. Исследования, посвящённые магнитострикции нанокристаллических магнитно-мягких ферромагнетиков представлены в литературе недостаточно широко, а экспериментальные данные 0 магнитостатической поверхностной магнитных анизотропиях И малочисленны и разрозненны.

3

Особенности магнитных свойств магнитной И структуры нанокристаллических и плёночных материалов требуют разработки новых методов измерений. В настоящее время в нашей стране наименее развитой измерений областью таких является аппаратура для измерений магнитострикции плёнок на подложках, что затрудняет комплексный анализ магнитных свойств плёнок.

Требуемый комплекс физических свойств способны сочетать в себе нанокристаллические плёнки Fe-MeX (Ме – переходные металлы IV группы Периодической таблицы, X – N, C, O или B), близкие по химическому составу к квазибинарной эвтектике α(Fe)+MeX и имеющие структуру, дисперсно-упрочненную фазой MeX. Работы с плёнками таких сплавов, начатые в 90-х годах прошлого столетия, выполняли японские (Nago K., Hasegawa N., Makino A., Isiwata N.) и отечественные исследователи (Шефтель Е.Н., Григорович В.К., Банных О.А.). Однако до настоящего времени для нанокристаллических магнитно-мягких плёнок, и в особенности для класса Fe-MeX, практически отсутствуют систематические исследования количественных взаимосвязей между химическим и фазовым составами, структурой, параметрами магнитной структуры и магнитными свойствами, что является необходимым для целенаправленного создания новых материалов.

В этой связи, **целью** настоящей **работы** являлось установление закономерностей формирования статических магнитных свойств при изменении структуры и фазового состава нанокристаллических плёнок системы Fe-Zr-N.

Для достижения цели должны быть решены основные задачи:

1. Получить методом магнетронного напыления нанокристаллические плёнки Fe с различным содержанием Zr и N;

2. Исследовать химический и фазовый состав, структуру и оценить уровень макронапряжений полученных плёнок;

3. Выполнить количественную оценку следующих параметров магнитной структуры полученных плёнок:

▶ Размер стохастического домена ( $2R_L$ ) и поле анизотропии в нём ( $<H_a>$ );

> Размер зерна ( $2R_c$ ) и величина локальной магнитной анизотропии в нём ( $H_a$ );

4. Определить величины вкладов магнитных анизотропий различной природы в локальную магнитную анизотропию  $(H_a)$ ;

5. Разработать метод измерения магнитострикции плёнок на неферромагнитных подложках и, используя этот метод, измерить магнитострикцию исследуемых плёнок;

6. Изучить закономерности влияния фазового состава и структуры нанокристаллических плёнок Fe с различным содержанием Zr и N на их статические магнитные свойства  $(B_s, H_c)$ .

Научная новизна полученных результатов:

1) Выполнена количественная оценка параметров магнитной структуры исследованных плёнок Fe с различным содержанием Zr и N (размер

стохастического домена  $2R_L$  и поле анизотропии в нём  $\langle H_a \rangle$ , размер области  $2R_c$  и величина локальной магнитной анизотропии в ней  $H_a$ );

2) Впервые выполнена количественная оценка вкладов магнитокристаллической, магнитоупругой, магнитостатической И анизотропий поверхностной магнитных В локальную магнитную анизотропию плёнок системы Fe-Zr-N, содержащих дисперсные включения нитридных фаз;

3) Результаты измерения магнитострикции ферромагнитных плёнок Fe с различным содержанием Zr и N на неферромагнитных подложках новым, разработанным автором, прямым неразрушающим консольным методом;

4) На примере плёнок состава  $Fe_{77}Zr_7N_{16}$  впервые обнаружено существование двух мод коэрцитивной силы, создаваемых двумя различными по величине полями макроскопической магнитной анизотропии  $\langle H_a \rangle$ , формирующимися в стохастических доменах двух типов, при этом, в одном из них на величину магнитоупругой анизотропии значительное влияние оказывают макронапряжения в плёнке;

5) Оценены вклады различных параметров структуры (размер зерна  $2R_c$ , поле локальной магнитной анизотропии  $D^{1/2}H_a$  и намагниченность насыщения  $M_s$ ) в величину коэрцитивной силы исследованных плёнок системы Fe-Zr-N;

6) Показано, что исследованные плёнки способны обеспечить комплекс  $B_s$  и  $H_c$ , превосходящий комплекс свойств объёмных промышленных магнитно-мягких сплавов 79HM, 50H и 49К2Ф. По величине  $B_s$  и термической стабильности структуры (вплоть до 500°С) исследованные плёнки превосходят нанокристаллические магнитно-мягкие ленточные сплавы типа FINEMET.

Практическая значимость выполненной работы:

• Новый неразрушающий прямой консольный метод измерения магнитострикции ферромагнитных плёнок на неферромагнитных подложках с использованием атомно-силового микроскопа.

• Методика количественной оценки параметров магнитной структуры и компонентов, составляющих локальную магнитную анизотропию магнитно-мягких плёнок.

• Методика количественной оценки влияния размера зерна, величин поля локальной магнитной анизотропии и намагниченности насыщения на величину коэрцитивной силы.

• Предложен комплекс экспериментальных и аналитических методов, который позволяет изучать и количественно оценивать многокомпонентную эффективную магнитную анизотропию магнитно-мягких нанокристаллических ферромагнетиков и их статические магнитные свойства во взаимосвязи с фазовым составом и структурой материала, что способствует эффективному прогнозированию статических магнитных свойств новых материалов и расширяет возможности синтеза материалов с заданными свойствами.

• Полученные в диссертационной работе результаты используются в курсах лекций, а также при выполнении практических занятий и курсовых научно-исследовательских работ студентов, обучающихся в высших учебных заведениях.

#### Основные положения, выносимые на защиту:

1. Количественные оценки параметров магнитной структуры нанокристаллических магнитно-мягких плёнок системы Fe-Zr-N с различным фазовым составом и структурой;

2. Новый, разработанный в процессе выполнения работы метод измерения магнитострикции ферромагнитных плёнок на неферромагнитных подложках и применение метода корреляционной магнитометрии для оценки магнитострикции насыщения;

3. Эффективная локальная магнитная анизотропия нанокристаллических плёнок на основе Fe, содержащих дисперсные включения нитридных фаз, состоит из магнитокристаллического, магнитоупругого, магнитостатического и поверхностного вкладов.

4. Количественная оценка вкладов фазовых и структурных параметров в величины статических магнитных свойств (*B<sub>s</sub>* и *H<sub>c</sub>*) в исследованных плёнках.

Достоверность результатов. Результаты, представленные в диссертационной работе, получены на основе экспериментов, проведенных на современном научном оборудовании и с использованием апробированных аналитической методов. Достоверность полученных результатов обеспечена использованием комплекса взаимодополняющих экспериментальных и аналитических методик и подтверждена их воспроизводимостью.

Личный вклад автора. Соискатель участвовал в постановке задач исследования совместно с научным руководителем. Все экспериментальные результаты, включенные в диссертацию, получены либо самим соискателем, либо при его прямом участии; анализ полученных результатов И формулировка основных выводов выполнены автором, либо при непосредственном его участии. Статьи и доклады на всероссийских и международных конференциях написаны при непосредственном участии автора.

Соответствие диссертации паспорту специальности. Диссертация соответствует специальности 05.16.01 «Металловедение и термическая обработка металлов и сплавов» в областях исследований: п. 1 «Изучение химического И фазового составов (характеризуемых взаимосвязи различными типами диаграмм), в том числе диаграммами состояния с физическими, механическими, химическими и другими свойствами сплавов», п. 3 «Теоретические и экспериментальные исследования влияния структуры (типа, количества и характера распределения дефектов кристаллического строения) на физические, химические, механические, технологические и эксплуатационные свойства металлов и сплавов» и п. 10 «Разработка новых и совершенствование существующих методов фазового, структурного И физико-химического анализов сплавов».

работы. Материалы диссертационной Апробация работы были конференциях: представлены на 24 всероссийских и международных Всероссийская молодёжная школа-семинар проблемам по физики конденсированного состояния вещества (СПФКС), Екатеринбург, ИФМ УрО РАН, 2009, 2012; Российская ежегодная конференция молодых научных сотрудников и аспирантов «Физико-химия и технология неорганических материалов», Москва, ИМЕТ РАН, 2010, 2011, 2012, 2013, 2014, 2015; IV Байкальская международная конференция «Магнитные материалы. Новые технологии» (BICMM-2010), Иркутск, Восточно-Сибирская государственная академия образования, 2010; Международная конференция с элементами для молодежи «Функциональные наноматериалы научной школы И вещества», Суздаль, ИМЕТ РАН, высокочистые 2010, 2012, 2014; Всероссийская конференция по наноматериалам «НАНО», Москва, ИМЕТ PAH, 2011, 2013; Moscow International Symposium on Magnetism MISM, Москва, МГУ, 2011, 2014; Всероссийская молодежная научная конференция с международным участием "Инновации в материаловедении", Москва, ИМЕТ РАН, 2013, 2015; 10th International Conference on Nanosciences & Nanotechnologies (NN13), Thessaloniki, Greece, 2013; Donostia International Conference on Nanoscaled Magnetism and Applications, Donostia - San Sebastian, Spain, 2013; Международная научная конференция студентов, аспирантов и молодых ученых по фундаментальным наукам «Ломоносов», Секция «Физика», Москва, МГУ, 2014, 2015; XII International Conference on Nanostructured Materials – NANO 2014, Москва, МГУ, 2014; 14th International Conference on Plasma Surface Engineering (PSE 2014), Garmisch-Partenkirchen, Germany, 2014; European Materials Research Society (E-MRS) 2016 Spring Meeting, Лилль, Франция.

Публикации. Материалы диссертационной работы опубликованы в 37 печатных работах, в том числе в 4 статьях в российских рецензируемых журналах, входящих в перечень ВАК, в 5 статьях в зарубежных журналах, а также в 28 публикациях в сборниках материалов и тезисов докладов всероссийских и международных конференций. В конце автореферата приведён список публикаций в рецензируемых журналах.

Структура и объем диссертации. Диссертация состоит из введения, семи глав, выводов и списка литературы. Работа изложена на 137 страницах машинописного текста и содержит 64 рисунка и 28 таблиц. Список цитируемой литературы содержит 167 наименований.

## ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

**Во введении** обоснована актуальность работы, её направленность на развитие представлений о влиянии структуры на статические магнитные свойства для создания новых магнитно-мягких нанокристаллических плёночных сплавов на основе Fe.

**Глава 1. Литературный обзор**. В первой главе представлен анализ литературных данных, в котором рассмотрены особенности структуры аморфных и нанокристаллических магнитно-мягких ферромагнетиков; виды магнитной анизотропии, возможные в таких ферромагнетиках; их магнитная

структура, описываемая МСМА; особенности магнитострикции аморфнонанокристаллических ферромагнетиков и методы её измерения. Показана MCMA недостаточность существующей для полного описания гистерезисных свойств ферромагнетиков, рассматривающей локальную (внутри зерна) магнитную анизотропию, как эффективную величину, без обсуждения её природы, и ограничивающей макроскопическую магнитную анизотропию только обменным взаимодействием между зёрнами, без учёта влияния других источников макроскопической магнитной анизотропии. Описаны технические сложности измерений кривых магнитострикции плёнок на подложках, приведшие в итоге к отсутствию в стране инструментальной базы для таких измерений. Отмечено отсутствие исследований систематических количественных взаимосвязей между химическим и фазовым составами, структурой, параметрами магнитной структуры и магнитными свойствами, что является необходимым для целенаправленного создания новых магнитно-мягких материалов. На основе выполненного анализа сформулированы цель и задачи диссертационной работы.

Глава 2. Объекты и методы исследования. В представленной диссертационной работе исследованы ферромагнитные плёнки класса Fe-MeX, в качестве легирующих элементов Me и X выбраны Zr и N, как способствующие аморфизации Fe, образующие квазибинарную эвтектику  $\alpha$ (Fe)+ZrN в процессе магнетронного напыления при соответствующих энергетических и температурных условиях процесса, а также экономически доступные и простые для введения. Учитывая, что эвтектические составы на диаграммах Fe-Zr и Fe-N находятся при ~8-10 ат.% Zr и N, то для исследований выбраны плёнки на основе Fe, содержащие 0...12 ат.% Zr и 0...16 ат.% N. В ранее проведённых исследованиях плёнок Fe-ZrN установлено [2], что наименьшая коэрцитивная сила достигается после вакуумных отжигов в интервале температур 400-500°С.

В работе были исследованы плёнки толщиной 180-500 нм, полученные прямым и наклонным магнетронным распылением мишеней Fe и Fe<sub>95</sub>Zr<sub>5</sub> в атмосфере Ar или Ar + N<sub>2</sub> на подложки из покровного стекла толщиной 0,2 мм, аморфного SiO<sub>2</sub> (толщина 1 мм) и многослойные подложки Si/SiO<sub>2</sub>/Si<sub>3</sub>N<sub>4</sub> (Si 0,4 мм ориентировки 001 + аморфный SiO<sub>2</sub> 0,4 мкм + Si<sub>3</sub>N<sub>4</sub> 0,16 мкм – верхний слой, на который нанесена исследованная плёнка Fe<sub>100-x-y</sub>Zr<sub>x</sub>N<sub>y</sub>), применяемые в микроэлектронике.

Наклонное напыление было использовано для получения плёнок с наведённой анизотропией в плоскости плёнки, чтобы оценить возможность получения частоты естественного ферромагнитного резонанса  ${}_{e}f_{\Phi MP}$  (и высоких магнитно-мягких свойств) в ГГц интервале частот магнитных полей.

Вакуумный отжиг образцов, полученных наклонным напылением, проводили при температурах 400°С и 500°С в течение 1 часа, вакуум (1-3)·10<sup>-6</sup> мм.рт.ст. Скорость нагрева 2°С/мин, скорость охлаждения не более 10°С/мин.

Химический состав плёнок в исходном состоянии и после отжигов определён методом рентгеноспектрального микроанализа на растровом электронном микроскопе FEI Quanta 200 с EDAX-приставкой.

Фазовый состав, структура и макронапряжения в плёнках исследованы методом рентгенодифракционного анализа на дифрактометре ДРОН-3 с излучением СиКа. Для качественного фазового анализа использовали программу РНАN. Количественный фазовый анализ, расчёты размеров зерна  $2R_c$  и микродеформации  $\varepsilon$  осуществляли с помощью полнопрофильного анализа по методу Ритвельда в программе РНАN%. Для расчётов периода кристаллической решётки *а* была использована программа OUTSET.

Магнитные свойства плёнок измерены на вибрационном магнитометре в полях до 10 кЭ. Магнитная структура плёнок исследована методами магнитно-силовой микроскопии и корреляционной магнитометрии.

Глава 3. Химический состав и фазово-структурное состояние исследованных плёнок. Методом прямого реактивного магнетронного напыления на подложках из покровного стекла получены плёнки химических составов Fe,  $Fe_{90}N_{10}$ ,  $Fe_{95}Zr_5$  и  $Fe_{85}Zr_5N_{10}$ . Методом наклонного реактивного магнетронного напыления на подложках из плавленого кварца SiO<sub>2</sub> и на трёхслойных подложках Si/SiO<sub>2</sub>/Si<sub>3</sub>N<sub>4</sub> (углы падения ионного потока к плоскости подложек 0°, 10°, 20°, 30°) получены плёнки химического состава Fe<sub>77</sub>Zr<sub>7</sub>N<sub>16</sub>. Химический состав плёнок, полученных наклонным напылением, после вакуумных отжигов при 400 и 500°С не изменился.

Обнаружено влияние угла наклонного напыления на фазово-структурное состояние плёнок в исходном и отожженном состояниях (таблица 1). Установлено, что тип подложки определяет фазовый состав плёнок:

- на аморфной подложке SiO<sub>2</sub> и подложке из покровного стекла формируется пересыщенный ОЦК твердый раствор N и Zr в α-Fe (таблица 1) или пересыщенный ОЦК твердый раствор N и/или Zr в α-Fe и неферромагнитный нитрид Fe<sub>2</sub>N (таблица 2);

- на комбинированной подложке Si/SiO<sub>2</sub>/Si<sub>3</sub>N<sub>4</sub> в плёнках Fe<sub>77</sub>Zr<sub>7</sub>N<sub>16</sub> формируется пересыщенный ОЦК твердый раствор N и Zr в α-Fe и неферромагнитная нитридная ГЦК фаза на основе ZrN.

Для пересыщенного твёрдого раствора N и Zr в ОЦК фазе на основе  $\alpha$ -Fe (таблица 2) установлена применимость правила Вегарда для периода решётки  $\alpha$ -Fe:  $a_{bcc-Fe}(N, Zr) = 2,82405 + 0,00622 \cdot N + 0,00664 \cdot Zr$ , где N и Zr – концентрации N и Zr, выраженные в ат.%.

Отжиги при 400 и 500°С уменьшают пересыщение твердого раствора в  $\alpha$ -Fe, о чём свидетельствует уменьшение периода кристаллической решётки, и не влияют на фазовый состав плёнок. Структура плёнок Fe<sub>77</sub>Zr<sub>7</sub>N<sub>16</sub>, отожжённых при 400 и 500°С, характеризуется высокой термической стабильностью, о чём свидетельствует незначительный рост зерна ОЦК фазы на основе  $\alpha$ -Fe в процессе отжигов.

Во всех исследованных плёнках Fe<sub>77</sub>Zr<sub>7</sub>N<sub>16</sub> в исходном состоянии, вне зависимости от типа подложки, при увеличении угла напыления наблюдается уменьшение периодов решёток α-Fe и ZrN, при этом значения периодов остаются

выше табличных, что может являться косвенным подтверждением направленного упорядочения твёрдого раствора, вызванного наклонным напылением [3]. Как показано на плёнках, полученных на подложке из SiO<sub>2</sub>, отжиги при 400 и 500°C приводят к уменьшению периода решётки α-Fe, который остаётся выше табличного, при этом влияние угла напыления на величину периода решётки не наблюдается, что свидетельствует о разрушении направленного упорядочения твёрдого раствора диффузионными процессами.

Таблица 1 – Результаты анализа дифрактограмм плёнок Fe<sub>77</sub>Zr<sub>7</sub>N<sub>16</sub>, полученных наклонным напылением

| Термообработка                                                                                     | Угол напыления,° | Фазовый состав / об.%  | a, Å        | 2 <i>R</i> <sub>c</sub> , нм | ε, %  |
|----------------------------------------------------------------------------------------------------|------------------|------------------------|-------------|------------------------------|-------|
| Плёнки в исходном                                                                                  | 0                |                        | 2,942±0,004 | 2,3                          | 0,1   |
| состоянии после                                                                                    | 10               | a Eo / 100             | 2,935±0,003 | 3                            | 0,1   |
| напыления                                                                                          | 20               | u-re / 100             | 2,930±0,003 | 2,1                          | 0,1   |
| (подложка SiO <sub>2</sub> )                                                                       | 30               |                        | 2,921±0,001 | 4                            | 0,1   |
|                                                                                                    |                  | α-Fe / 67              | 2,887±0,001 | 5,2                          | 0,01  |
|                                                                                                    | 0                | FeZr <sub>2</sub> / 21 | 12,42       | 5,5                          | 0,01  |
| Отжиг 400°С, 1 час                                                                                 |                  | Fe <sub>4</sub> N / 12 | 3,755±0,007 | 9,1                          | 0,1   |
| (подложка SiO <sub>2</sub> )                                                                       | 10               |                        | 2,895±0,001 | 3                            | 0,1   |
|                                                                                                    | 20               | α-Fe / 100             | 2,902±0,001 | 2,1                          | 0,1   |
|                                                                                                    | 30               |                        | 2,896±0,001 | 4                            | 0,1   |
| Отжиг 500°С, 1 час                                                                                 | 10               | a Eo / 100             | 2,885±0,003 | 5,2                          | 0,115 |
| (подложка SiO <sub>2</sub> )                                                                       | 20               | u-re / 100             | 2,878±0,001 | 7,1                          | 0,436 |
|                                                                                                    | 0                | α-Fe / 77              | 2,942±0,002 | 2,3                          | 0,1   |
| Π                                                                                                  |                  | ZrN / 23               | 4,730±0,020 | 2,4                          | 0,1   |
| Пленки в исходном                                                                                  | 10               | α-Fe / 77              | 2,925±0,001 | 3,2                          | 0,1   |
| состоянии после<br>напыления<br>(подложка<br>Si/SiO <sub>2</sub> /Si <sub>3</sub> N <sub>4</sub> ) |                  | ZrN / 23               | 4,697±0,009 | 2,2                          | 0,1   |
|                                                                                                    | 20               | α-Fe / 88              | 2,930±0,002 | 2,5                          | 0,1   |
|                                                                                                    | 20               | ZrN / 12               | 4,699±0,001 | 14,4                         | 0,04  |
|                                                                                                    | 30               | α-Fe / 68              | 2,925±0,001 | 3,3                          | 0,1   |
|                                                                                                    |                  | ZrN / 32               | 4,688±0,003 | 5,6                          | 0,115 |
| Отжиг 500°С, 1 час                                                                                 | 20               | a Eo / 100             | 2,864±0,001 | 23,2                         | 0,018 |
| $(Si/SiO_2/Si_3N_4)$                                                                               | 30               | α-Γθ / 100             | 2,885±0,001 | 11                           | 0,771 |

|--|

| Хим. состав                                      | Фазовый состав / об.% | a, Å             | 2 <i>R</i> <sub>c</sub> , нм | ε, %          | σ, МПа |  |
|--------------------------------------------------|-----------------------|------------------|------------------------------|---------------|--------|--|
| Fe                                               | α-Fe / 100            | 2,824±0,003      | 39±11                        | 0,56±0,04     | 1466   |  |
| Fo. N                                            | α-Fe(N) / 95          | 2,873±0,003      | 14,6                         | 0,53±0,09     | 2717   |  |
| $Fe_{90}N_{10}$                                  | Fe <sub>2</sub> N / 5 | a=2,759; c=4,429 | 78,2                         | 0,07±0,02     | -2/1/  |  |
| Fe <sub>95</sub> Zr <sub>5</sub>                 | α-Fe(Zr) / 100        | 2,857±0,008      | 34±3                         | 0,23±0,02     | -2076  |  |
| Fe <sub>85</sub> Zr <sub>5</sub> N <sub>10</sub> | α-Fe(N,Zr) / 93       | 2,899±0,007      | 11±1                         | 0,24±0,09     | 530    |  |
|                                                  | Fe <sub>2</sub> N / 7 | a=2,738; c=4,560 | 35,4                         | $1,05\pm0,04$ | -330   |  |

Полученные результаты о фазовом составе плёнок (ОЦК фаза на основе α-Fe с небольшим количеством неферромагнитных фаз) и размере зерна ферромагнитной фазы (менее 10 нм) позволяют предполагать, что плёнки должны характеризоваться достаточно высокой намагниченностью насыщения и, согласно MCMA, низкими значениями коэрцитивной силы.

Глава 4. Статические магнитные свойства и эффективные параметры стохастической магнитной структуры исследованных плёнок. 4.1 Статические магнитные свойства, оцененные по петле гистерезиса. Индукция насыщения *B<sub>s</sub>*, коэрцитивная сила *H<sub>c</sub>* и относительная

остаточная индукция  $B_r/B_s$  плёнок системы Fe-Zr-N в исходном состоянии (прямое напыление) приведены в таблице 3. Индукция насыщения  $B_s$  плёнки Fe близка к величине для чистого металла, равной 2,15 Тл. Легирование плёнок Fe цирконием и азотом значительно снижает их индукцию насыщения.

| ···· • • · · · · · · ·           |                 |            |           |
|----------------------------------|-----------------|------------|-----------|
| Химический состав                | <i>Вs</i> , Тл  | $H_c, \Im$ | $B_r/B_s$ |
| Fe                               | 2,12±0,01       | 13±2       | 0,75±0,04 |
| Fe <sub>90</sub> N <sub>10</sub> | 1,67±0,03       | 90±5       | 0,75±0,01 |
| Fe <sub>95</sub> Zr <sub>5</sub> | 2,01±0,01       | 45±5       | 0,34±0,03 |
| $Fe_{85}Zr_5N_{10}$              | $1.65 \pm 0.01$ | 40±5       | 0,37±0,03 |

Таблица 3 - Статические магнитные свойства исследованных плёнок в исходном состоянии

Статические магнитные свойства плёнок  $Fe_{77}Zr_7N_{16}$ , измеренные в плоскости плёнки в двух перпендикулярных направлениях параллельно её сторонам (ось 1 и ось 2), приведены в таблице 4. После отжига при 400°C в течение 1 часа плёнки  $Fe_{77}Zr_7N_{16}$  имеют оптимальную форму петель гистерезиса (магнитная индукция, близкая к насыщению, достигается во внешних магнитных полях близких к коэрцитивной силе). Коэрцитивная сила плёнок  $Fe_{77}Zr_7N_{16}$  в результате отжига снижается от единиц эрстед до десятых долей эрстед. Уменьшение коэрцитивной силы после отжигов, притом, что размер зерна практически не меняется (таблица 1) отражает изменения магнитной структуры, что описано в подразделе 7.2.

Известно, что частота  ${}_{e}f_{\phi MP}$  определяется полем наведённой анизотропии  $H_k$  и намагниченностью насыщения  $M_s$ :  ${}_{e}f_{\phi MP} = \gamma (4\pi M_s H_k)^{1/2}$  ( $\gamma = 2,8$  МГц/Э - гиромагнитное отношение). Для полученных величин  $H_k \approx 40$  Э (угол напыления 30°) и  $M_s$  до 1400 Гс (таблица 4) даёт  ${}_{e}f_{\phi MP}$  до 2,37 ГГц.

| Термо-                    | Угол                  | Полнонию                                            | $H_c, \Im$ |       | $B_r/B_s$ |       | DΤπ                        |
|---------------------------|-----------------------|-----------------------------------------------------|------------|-------|-----------|-------|----------------------------|
| обработка                 | напыления, $^{\circ}$ | подложка                                            | Ось 1      | Ось 2 | Ось 1     | Ось 2 | <b>D</b> <sub>s</sub> , 1л |
|                           | 0                     | SiO <sub>2</sub>                                    | 6,5        | 7     | 0,34      | 0,36  | -                          |
|                           | 0                     |                                                     | 8,5        | 9     | 0,45      | 0,38  | 1,76                       |
| исходное                  | 10                    | Si/SiO <sub>2</sub> /Si <sub>3</sub> N <sub>4</sub> | 19,5       | 19    | 0,27      | 0,28  | 1,32                       |
| состояние                 | 20                    |                                                     | 12         | 12    | 0,34      | 0,32  | 1,79                       |
|                           | 30                    | SiO <sub>2</sub>                                    | 13,5       | 13,5  | 0,24      | 0,23  | -                          |
|                           | 30                    | Si/SiO <sub>2</sub> /Si <sub>3</sub> N <sub>4</sub> | 16         | 10,5  | 0,15      | 0,24  | 1,41                       |
| отжиг<br>400°С,<br>1 часа | 0                     | SiO <sub>2</sub>                                    | 3          | 9     | 0,36      | 0,58  | 0,57                       |
|                           | 10                    |                                                     | 1,5        | 10    | 0,48      | 0,5   | 0,85                       |
|                           | 20                    |                                                     | 1,7        | 1,5   | 0,41      | 0,2   | 1,17                       |
|                           | 30                    |                                                     | 0,2        | 1,5   | 0,52      | 0,22  | 0,88                       |
| отжиг<br>500°С,<br>1 часа | 10                    | SiO <sub>2</sub>                                    | 2          | 5,5   | 0,09      | 0,13  | 1,32                       |
|                           | 20                    |                                                     | 0,7        | 0,8   | 0,05      | 0,08  | 1,12                       |
|                           | 20                    | Si/SiO /Si N                                        | 0,6        | 0,2   | 0,1       | 0,04  | 0,89                       |
|                           | 30                    | $51/510_2/51_3N_4$                                  | 0,5        | 0,1   | 0,13      | 0,03  | 1,17                       |

Таблица 4 – Влияние типа подложки и отжига на статические магнитные свойства плёнок Fe<sub>77</sub>Zr<sub>7</sub>N<sub>16</sub>

**4.2 Зависимость индукции насыщения ОЦК фазы на основе**  $\alpha$ **-Fe от содержания азота в твёрдом растворе**  $\alpha$ **-Fe**(**N**). Установлена зависимость индукции насыщения  $B_s^{\alpha$ -Fe(N)} \alpha-Fe в исследованных плёнках на основе Fe (с содержанием ~9 ат.% Zr и 0...16 ат.% N) от содержания азота в твёрдом

растворе  $\alpha$ -Fe(N). Из рисунка 1 видно, что в плёнках с содержанием азота более ~9 ат.% (N/Zr > 1) азот, не связанный в нитрид ZrN, образует пересыщенный твёрдый раствор внедрения  $\alpha$ -Fe(N), что выражается в линейном уменьшении индукции насыщения  $\alpha$ -Fe(N). Пунктирная линия на рисунке 1:  $B_s^{\alpha$ -Fe(N)} (Tn) = 2,15 - 0,17 · N, где N – концентрация N, выраженная в ат.%. Отметим, что такая ситуация возможна только в тех плёнках, в которых весь Zr связан в нитрид ZrN и не образует пересыщенный твёрдый раствор замещения  $\alpha$ -Fe(Zr), наблюдаемый по индукции насыщения на рисунке 1 в области N/Zr < 1.



Рисунок 1 – Зависимость  $B_s$  фазы на основе  $\alpha$ -Fe от соотношения N/Zr в плёнке

**4.3 Исследование магнитной структуры плёнок методом магнитносиловой микроскопии**. Прямые наблюдения магнитной структуры плёнки  $Fe_{78}Zr_{10}N_{12}$  (отжиг 400°С, 1 час) выполнены методом магнитно-силовой микроскопии (рисунок 2) на атомно-силовом микроскопе NT-MDT Smena. На рисунке видны неоднородности контраста, период которых равен размеру стохастического домена  $2R_L$  в наноразмерных ферромагнетиках.

Для оценки величины  $R_L$ , из-за существования анизотропии контраста на изображении, рассчитывали функции автокорреляций в двух направлениях (по оси *ох* и по оси *оу*, рисунок 2). Для расчёта использовали стандартное уравнение МКМ ПА

$$C(r) = \langle (z(r') - \langle z \rangle) (z(r'+r) - \langle z \rangle) \rangle, \quad (1)$$

C(r)коэффициент где автокорреляции, амплитуда Zисследуемого параметра (интенсивность изображения), r' И r' + r координаты двух точек, находящихся на расстоянии r, для которых рассчитывается коэффициент Полученные автокорреляции. экспериментальные значения коэффициента автокорреляции C(r),усреднённые по всем ЛИНИЯМ для каждого направления oy), (ox)И представлены на рисунках 3 и 4.



Рисунок 2 – Распределение магнитного поля на поверхности плёнки  $Fe_{78}Zr_{10}N_{12}$  (изображение получено в магнитно-силовом микроскопе)

Из полученных уравнений  $C(r) = \exp(-r/R_L)$  и  $C(r) = (1+r/R_L)^{-3/2}\cos(r/R_L)$ определили величины  $R_L$  для направлений *ox* и *oy*. Получены величины  $R_L^{ox} = 170 \pm 9$  нм и  $R_L^{oy} = 90 \pm 5$  нм, которые находятся в хорошем количественном согласии со значением  $R_L = 130 \pm 40$  нм, полученным методом корреляционной магнитометрии на том же образце.



Рисунок 3 – Зависимость *C*(*r*) в направлении *ох* (рисунок 2)

4.4 Исследование магнитной структуры методом корреляционной магнитометрии. эффективных Информацию об магнитной параметрах структуры содержит В себе полевая зависимость дисперсии намагниченности  $d_m = 1 - M(H)/M_s$  в области приближения намагниченности к насыщению [4]. Во всех изученных образцах в теорией соответствии С







намагниченности  $d_m$  в плёнке  $Fe_{90}N_{10}$  от приложенного магнитного поля H

корреляционной магнитометрии дисперсия намагниченности  $d_m$ , построенная в двойном логарифмическом масштабе, в сильных полях описывается двумя степенными функциями, пересекающимися в поле *H<sub>R</sub>*. Пример обработки кривой намагничивания *М*(*H*) по методу корреляционной магнитометрии приведён на рисунке 5. Непосредственно из кривой намагничивания можно определить две величины:  $D^{1/2}H_a$  и  $H_R$  и, предполагая одноосную симметрию случайно направленной локальной анизотропии (D = 1/15), можно оценить эффективную локальную магнитную анизотропию  $K_{eff} = H_a M_s / 2$  (таблица 5). В корреляционной магнитометрии соответствии теорией С ПО экспериментально полученным величинам  $D^{1/2}H_a$  и  $H_R$  можно оценить вклад локального поля анизотропии в среднеквадратичную флуктуацию поля  $D^{1/2} < H_a >$ анизотропии стохастического домена по формуле  $D^{1/2} < H_a > = (D^{1/2} H_a)^4 / H_R^3$  и относительный радиус стохастического домена  $R_I/R_c$  (таблица 5).

| 1 wormiga o                      |                                        | minon erp  |           | - Ac Danibini I             |                    |           |           |                |
|----------------------------------|----------------------------------------|------------|-----------|-----------------------------|--------------------|-----------|-----------|----------------|
| Хим.<br>состав                   | $K_{eff}$ , $10^5$ эрг/см <sup>3</sup> | $H_R, \Im$ | <На>, Э   | $D^{1/2} < H_a >,$<br>$\Im$ | Н <sub>с</sub> , Э | $B_r/B_s$ | $R_L/R_c$ | <i>RL</i> , нм |
| Fe                               | 10,1±3,4                               | 1700±700   | 7,27±0,89 | $1,88\pm0,23$               | 13±2               | 0,75      | 29,74     | 580±160        |
| Fe <sub>90</sub> N <sub>10</sub> | 12±2,9                                 | 1500±400   | 54±5      | 14±1,3                      | 90±5               | 0,75      | 10,67     | 80±10          |
| Fe <sub>95</sub> Zr <sub>5</sub> | 6,4±0,8                                | 280±40     | 320±100   | 83±26                       | 45±5               | 0,34      | 1,82      | 31±6           |
| $Fe_{85}Zr_5N_{10}$              | 10,5±0,7                               | 800±50     | 220±36    | 57±9                        | 40±5               | 0,37      | 3,64      | 20±2           |

Таблица 5 – Параметры магнитной структуры в исследованных плёнках

Глава 5. Магнитострикция исследованных плёнок. Магнитострикция создаёт магнитоупругую анизотропию, определяющую в значительной степени величину коэрцитивной силы (главы 6 и 7). Магнитострикция плёнок измерена разработанным автором консольным методом на атомносиловом микроскопе NT-MDT Smena, в рабочую часть которого для намагничивания плёнки было установлено специально сконструированное приспособление, в котором плёнка на подложке закреплена в виде консоли (рисунок 6). Экспериментальная методика основана на следующем. В процессе намагничивания в ферромагнитной плёнке расположенной на неферромагнитной подложке под действием магнитострикции возникают напряжения, растягивают упругие которые или сжимают плёнку (в зависимости от знака магнитострикции). Поскольку в подложке при этом не возникают напряжения такой же природы, то деформация реализуется в виде изгиба системы «плёнка-подложка». Изгиб подложки *R* при включении магнитного поля приводит к изменению высоты рельефа на топографическом изображении поверхности плёнки. В процессе сканирования поверхности плёнки периодически включали и выключали магнитное поле, при этом на изображении поверхности наблюдалось изменение высоты рельефа. соответствующее деформации плёнки (рисунок 7). Изгиб свободного конца подложки, вызванный изменением состояния намагниченности плёнки, связан с магнитострикцией λ в направлении магнитного поля.



Рисунок 6 – Геометрия плёнки на подложке, закреплённой в виде консоли в атомно-силовом микроскопе

Рисунок 7 – Изображение топографии поверхности плёнки Fe95Zr5 в атомносиловом микроскопе. Магнитное поле напряжённостью 80 Э прикладывается в процессе сканирования в интервалах, стрелками. отмеченных Смещение рельефа по оси Z при включении поля (отметки 1, 3 и 5 мкм по оси Х) происходило В отрицательном направлении, а при выключении поля (отметки 2, 4 и 6 мкм по оси Х) – в положительном, что соответствует положительной деформации плёнки.

Экспериментально полученные зависимости величины магнитострикции от приложенного магнитного поля величиной до 80 Э (рисунок 8) были проэкстраполированы до поля  $H = \infty$  ( $H^{-N} = 0$ ), что позволило впервые, используя метод корреляционной магнитометрии, определить магнитострикцию насыщения  $\lambda_s$  плёнок (рисунок 9, таблица 6). Как видно, наибольшей магнитострикцией обладает нелегированная плёнка Легирование Zr количестве 5 ат.% Fe. В значительно снижает магнитострикцию плёнки Fe. Легирование азотом в количестве 10 ат.%

приводит к изменению знака магнитострикции нанокристаллической плёнки на основе Fe от плюса к минусу и уменьшению её величины по модулю. При легировании Fe совместно цирконием и азотом в количествах 5 и 10 ат.%, соответственно, магнитострикция плёнки уменьшается, однако оказывается больше, чем у плёнки Fe<sub>95</sub>Zr<sub>5</sub>, но остаётся намного меньше, чем у плёнки Fe.



Таблица 6 – Величина магнитострикции насыщения  $\lambda_s$  исследованных плёнок



-8

-12

Глава 6. Компоненты, составляющие локальную магнитную анизотропию исследованных плёнок. Экспериментально полученные величины эффективной локальной магнитной анизотропии K<sub>eff</sub> (таблица 5) величину МКА значительно превышают монокристалла  $K_1$ Fe (приблизительно  $4,8\cdot10^5$  эрг/см<sup>3</sup> [5]), что, по всей видимости, связано с дополнительными вкладами магнитоупругой K<sub>me</sub>, а в двухфазных плёнках, содержащих частицы нитридной фазы – ещё и поверхностной K<sub>a.s</sub>, и  $K_{ms}$ магнитостатической энергий. Вклады локальных энергий магнитоупругой *К<sub>me</sub>*, поверхностной *К<sub>a,s</sub>* и магнитостатической *К<sub>ms</sub>* природы оценены следующим образом.

 $K_{me} = (3/2) \varepsilon \lambda_s E_f / (1 + v_f)$ , где  $\varepsilon$  – микродеформация в ферромагнитной фазе (таблица 2); E<sub>f</sub> – модуль Юнга плёнки (принятый равным 1,42·10<sup>12</sup> эрг/см<sup>3</sup>) и  $v_f$  – коэффициент Пуассона (принят равным 0,3).

На границах зёрен неферромагнитной фазы Fe<sub>2</sub>N с ферромагнитной матрицей должны возникать магнитостатические заряды [6], вызывающие  $K_{ms} = (3/2) M_s^2 V_{Fe2N}^{2/3}$ , где  $V_{Fe2N}$  – объёмная доля фазы Fe<sub>2</sub>N (таблица 2).

Границы зёрен Fe<sub>2</sub>N с зёрнами α-Fe являются областью с нарушенной симметрией в расположении атомов на поверхности ферромагнитного зерна α-Fe. Поверхностная магнитная анизотропия [7] K<sub>s</sub> в исследованных плёнках оценена как

0.25

0,20

Э<sup>-1/2</sup>

$$K_s = 3a \,\lambda_s \, E_f / [(1 + v_f)(8 \times 2^{1/2})], \tag{2}$$

где *а* – период решётки α-Fe (таблица 2).

$$K_{a,s} = 6 K_s V_{Fe2N} / (2R_{Fe2N}),$$
 (3)

где  $2R_{Fe2N}$  – размер зерна фазы Fe<sub>2</sub>N (таблица 2). Полученные значения  $K_{me}$ ,  $K_{ms}$  и  $K_{a,s}$  приведены в таблице 7.

| 10 <sup>5</sup> эрг/см <sup>3</sup> | Fe                           | $Fe_{90}N_{10}$ | Fe <sub>95</sub> Zr <sub>5</sub> | $Fe_{85}Zr_5N_{10}$ |  |
|-------------------------------------|------------------------------|-----------------|----------------------------------|---------------------|--|
| $K_{e\!f\!f}$                       | 10,1±3,4                     | 12±2,9          | 6,4±0,8                          | 10,5±0,7            |  |
| $K_{me}$                            | 1,6±0,3                      | 0,7±0,2         | 0,28±0,03                        | 0,83±0,32           |  |
| $K_{ms}$                            | неприменимо                  | 3,5±0,5         | неприменимо                      | 4,2±0,4             |  |
| $K_{a,s}$                           | неприменимо                  | 0,13±0,04       | неприменимо                      | 0,67±0,08           |  |
| $K_1$                               | 4,8 ( <i>МКА ОЦК Fe</i> [5]) |                 |                                  |                     |  |

Таблица 7 – Вклады в *К*<sub>eff</sub> в исследованных плёнках

Таким образом, видно, что высокие значения  $K_{eff}$  в исследованных плёнках (таблица 5) после вычитания из них вкладов  $K_{me}$ ,  $K_{a,s}$  и  $K_{ms}$  становятся близки (в пределах погрешностей  $K_{eff}$ ) к величине МКА ОЦК Fe ~ 4,8·10<sup>5</sup> эрг/см<sup>3</sup> [5].

Компоненты стохастической магнитной структуры Глава 7. плёнок. 7.1 исследованных Макроскопическая магнитоупругая анизотропия. Допуская, ЧТО условиях подавления обменным В взаимодействием локальной анизотропии основной вклад в величину коэрцитивной силы вносит магнитоупругая анизотропия, можно оценить коэрцитивную силу пленок  $_{\sigma}H_{c} = (3/2) \lambda_{s} \sigma / M_{s}$ . Полученные для плёнок Fe,  $Fe_{90}N_{10}$ ,  $Fe_{95}Zr_5$  и  $Fe_{85}Zr_5N_{10}$  величины  $_{\sigma}H_{c}$  (таблица 8) значительно превышают *H<sub>c</sub>*, измеренную по петлям гистерезиса (таблица 3 и рисунок 10). Это косвенно указывает на то, что в исследованных плёнках  $H_c$ , в основном, определяется свойствами стохастических доменов (Глава 4). Известно [8], распределении магнитной при двухмодальном анизотропии что В ферромагнитной фазе, на дифференциальной восприимчивости *dM/dH* материала наблюдаются два максимума. Кривые *dM/dH* исследованных плёнок хорошо описываются суммой двух функций Лоренца с максимумами при  $H_c$  и  $_{\sigma}H_c$  (рисунок 11). Объёмные доли  $V_1$  и  $V_2$  каждой из магнитных анизотропий (Н<sub>c</sub> и <sub>σ</sub>H<sub>c</sub>, соответственно), оцененные по относительным площадям под лоренцианами, приведены в таблице 8.

Достаточно хорошее совпадение оценок  $_{\sigma}H_{c}$  (таблица 8) с положением второго максимума dM/dH (рисунок 11) косвенно подтверждает магнитоупругую природу магнитной анизотропии V<sub>2</sub>. Такая форма кривых *dM/dH* характерна для большинства исследованных в работе плёнок. Наблюдаемые формы петель гистерезиса (рисунок 10), и, в частности, величины относительной остаточной индукции  $B_r/B_s$  (таблица 3), можно объяснить тем, что в образцах Fe и Fe<sub>90</sub>N<sub>10</sub> магнитострикция  $\lambda_s$  и макронапряжения  $\sigma$ имеют одинаковый знак, что увеличивает прямоугольность петель гистерезиса; а в образцах Fe<sub>95</sub>Zr<sub>5</sub> и Fe<sub>85</sub>Zr<sub>5</sub>N<sub>10</sub> магнитострикция  $\lambda_s$  и макронапряжения  $\sigma$  имеют противоположные знаки, что вызывает значительную перпендикулярную анизотропию (наличие второй магнитной анизотропии V<sub>2</sub>).

| Хим. состав                                  | $H_c, \Im$                                                                                           | $_{\sigma}H_{c}, \Im$ | $V_1, \%$ | V2, % | $B_r/B_s$ |
|----------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------|-----------|-------|-----------|
| Fe                                           | 13±2                                                                                                 | 220                   | 87        | 13    | 0,75      |
| $Fe_{90}N_{10}$                              | 90±5                                                                                                 | 245                   | 92        | 8     | 0,75      |
| Fe <sub>95</sub> Zr <sub>5</sub>             | 45±5                                                                                                 | 146                   | 66        | 34    | 0,34      |
| $Fe_{85}Zr_5N_{10}$                          | 40±5                                                                                                 | 127                   | 65        | 35    | 0,37      |
| 1,0<br>0,5<br>0,5<br>-0,5<br>-1,0<br>-400 -2 | <sup>20</sup> N <sub>10</sub><br><sub>35</sub> Zr <sub>5</sub> N <sub>10</sub><br>2000 0 200<br>H, Э | ) 400                 | 10<br>    |       | 400       |

Таблица 8 – Компоненты макроскопической магнитной анизотропии в исследованных плёнках

Рисунок 10 – Петли гистерезиса плёнок Рисунок 11 – Кривая дифференциальной восприимчивости *dM/dH* плёнки Fe<sub>85</sub>Zr<sub>5</sub>N<sub>10</sub> Fe<sub>90</sub>N<sub>10</sub> и Fe<sub>85</sub>Zr<sub>5</sub>N<sub>10</sub>

7.2 Две моды коэрцитивной силы. В предыдущем подразделе рассмотрена двухмодальная коэрцитивная сила, в которой одна мода обнаружена методом корреляционной магнитометрии, а вторая – из кривых дифференциальной восприимчивости. В данном подразделе на примере плёнок, полученных наклонным напылением, химический состав и фазовоструктурное состояние которых рассмотрены в Главе 3, рассмотрены параметры магнитной структуры с двухмодальной коэрцитивной силой, выявленной методом корреляционной магнитометрии.

На рисунке 12 представлены петли гистерезиса плёнок Fe<sub>77</sub>Zr<sub>7</sub>N<sub>16</sub> в зависимости от температуры отжига. Наличие протяжённого возрастающего участка петли гистерезиса в полях выше коэрцитивной силы, наблюдаемого для неотожжённых плёнок (рисунок 12а), свидетельствует о присутствии в плёнках перпендикулярной анизотропии. Отжиги при 400 и 500°С привели к уменьшению коэрцитивной силы  $H_{c1}$  (относительно исходного состояния) тем в большей степени, чем больше угол наклона при напылении (рисунок 12б). При этом, отжиг при 500°С приводит к формированию в плёнках дополнительной магнитной анизотропии со значительно большей, чем  $H_{c1}$ , коэрцитивной силой  $H_{c2}$  (о чём свидетельствует расширение петли, рисунок 12в).

Петли гистерезиса исследованных плёнок Fe<sub>77</sub>Zr<sub>7</sub>N<sub>16</sub> были описаны суммой двух функций Ланжевена

$$M(H) = M_{s1}(cth(P_1(H \pm H_{c1})) - (P_1(H \pm H_{c1}))^{-1}) + M_{s2}(cth(P_2(H \pm H_{c2})) - (P_2(H \pm H_{c2}))^{-1}) + \chi H, (4)$$

что позволило определить коэрцитивные силы каждой из магнитных анизотропий ( $H_{c1}$  и  $H_{c2}$ ) и их объёмные доли  $M_{s1}$  и  $M_{s2}$  (рисунок 12в). При этом использовали подгоночные параметры  $P_1$ ,  $P_2$  и  $\chi$ .

Для количественной оценки параметров локальной и макроскопической магнитной структуры кривые намагничивания в сильных полях были описаны уравнением

$$M(H) = M_{s} \left( 1 - \frac{1}{2} \frac{(D^{1/2} H_{a})^{2}}{H^{1/2} H_{R}^{3/2} + H^{2}} \right).$$
(5)



Рисунок 12 – Изменение формы петли гистерезиса плёнок  $Fe_{77}Zr_7N_{16}$ , расположенных на разных подложках, в зависимости от температуры отжига: а - плёнки на подложках  $Si/SiO_2/Si_3N_4$ , без отжига; б – плёнки на подложках  $SiO_2$ , отжиг 400°C; в – плёнки на подложках  $Si/SiO_2/Si_3N_4$ , отжиг 500°C

Из этого уравнения измерены среднеквадратичная флуктуация локального поля анизотропии  $D^{1/2}H_a$  и обменное поле  $H_R$ , по которым была определена среднеквадратичная флуктуация поля анизотропии стохастического домена  $D^{1/2} < H_a >_1$ :

$$D^{1/2} \langle H_a \rangle_1 = \frac{(D^{1/2} H_a)^4}{H_R^3}, \qquad (6)$$

действующая на масштабе стохастического магнитного домена размером  $2R_{L1} = 2R_c (H_R/D^{1/2}H_a)^2$ .

Зависимость дисперсии намагниченности  $d_m = 1 - M/M_s$  от внешнего поля H, построенная в двойном логарифмическом масштабе (рисунок 5), описывается асимптотами  $d_m \sim H^{1/2}$  и  $d_m \sim H^2$ , а также участком в области низких значений приложенных полей, описываемым зависимостью  $d_m = (D^{1/2} < H_a >_2/H)^2$ . Из этого участка определена вторая среднеквадратичная флуктуация поля анизотропии стохастического домена  $D^{1/2} < H_a >_2$ . Поля анизотропии  $D^{1/2} < H_a >_2$  различаются на один-два порядка.

В случае, когда коэрцитивная сила определяется только обменным взаимодействием между зёрнами, она описывается как  $H_c \sim K_{eff}^{4}(2R_c)^6/(M_sA^3)$ . Для удобства экспериментальной проверки это соотношение можно преобразовать к виду  $H_c/D^{1/2}H_a = (R_c/\delta)^6$ , где  $\delta = (A/K)^{1/2}$ ,  $K = H_aM_s/2$ ,  $R_c/\delta = (R_L/R_c)^{-1/4}$ . Для исследованных плёнок Fe<sub>77</sub>Zr<sub>7</sub>N<sub>16</sub> корреляция между величинами  $H_c/D^{1/2}H_a$  и  $R_c/\delta$  приведена на рисунке 13 (сплошная линия –

 $H_c/D^{1/2}H_a = (R_c/\delta)^6$ , тождественное  $H_c = D^{1/2} < H_a >$ ). равенство Это свидетельствует о том, что поле  $D^{1/2} < H_a >_1$  внутри области  $2R_{L1}$  равно величине  $H_{c1}$  (рисунок 14). Коэрцитивная сила  $H_{c2}$  (рисунок 13) равна полю  $D^{1/2} < H_a >_2$ (получено методом корреляционной магнитометрии). Для плёнок в состоянии без отжига поле  $D^{1/2} < H_a >_2$  равно полю перпендикулярной анизотропии (рисунок 11а), источником которой может быть колонный рост плёнок или отрицательная магнитоупругая анизотропия от внутренних макронапряжений. Отожжённые плёнки имеют коэрцитивную силу  $H_{c2}$  от магнитной анизотропии, лежащей в плоскости плёнки. Как видно из рисунков 13 и 14, обе моды коэрцитивной силы подчиняются MCMA и степенному закону  $H_c \sim (2R_c)^6$ .





Рисунок 13 – Корреляция  $H_c/D^{1/2}H_a$  и  $R_c/\delta$  в Рисунок 14 – Корреляция двух полей анизотропии плёнках Fe<sub>77</sub>Zr<sub>7</sub>N<sub>16</sub>: • –  $H_{c1}/D^{1/2}H_a \sim R_c/\delta_1$ ;  $\circ - H_{c2}/D^{1/2}H_a \sim R_c/\delta_2;$  сплошная линия – равенство  $H_c/D^{1/2}H_a = (R_c/\delta)^6$ 

 $(D^{1/2} < H_a >_1$  и  $D^{1/2} < H_a >_2)$  и двух коэрцитивных сил  $(H_{c1}$  и  $H_{c2})$  в исследованных плёнках Fe<sub>77</sub>Zr<sub>7</sub>N<sub>16</sub>:  $\Box - H_{c1} \sim D^{1/2} \langle H_a \rangle_1; \bullet - H_{c2} \sim D^{1/2} \langle H_a \rangle_2;$ сплошная линия – равенство  $H_c = D^{1/2} \langle H_a \rangle$ 

7.3 Статические магнитные свойства фазово-структурное И состояние исследованных плёнок Fe-Zr-N. На основе полученных данных о фазовом составе, структуре и магнитной структуре исследованных в работе плёнок можно дать следующие качественные рекомендации по оптимизации фазового состава и структуры для получения наивысших статических магнитно-мягких свойств (высокая индукция насыщения и минимальная коэрцитивная сила).

Индукция насыщения. Наличие неферромагнитных фаз (уменьшение объёмной доли ферромагнитной фазы в материале, таблицы 3 и 4), твёрдый раствор неферромагнитных элементов в ферромагнитной фазе (рисунок 1), увеличение объёмной доли границ зёрен при уменьшении размера зерна и аморфизация (ослабление обменного взаимодействия) – всё это снижает индукцию насыщения сплава.

Коэрцитивная сила. Микродеформация кристаллической решётки в зерне ферромагнитной фазы, включения неферромагнитных фаз и фаз с матричной (таблица намагниченностью меньше фазы 7), случайно ориентированные макронапряжения (таблица 8) приводят к увеличению анизотропии увеличению энергии магнитной И, как следствие, К коэрцитивной силы. К значительному снижению коэрцитивной силы приводит структура с размером зерна на много меньше длины обменного взаимодействия (рисунок 13).

На основе полученных данных о магнитной структуре исследованных в работе плёнок была дана количественная оценка влияния размера зерна ( $2R_c$ , таблицы 1 и 2), поля локальной магнитной анизотропии  $(D^{1/2}H_a)$ , таблица 5 и рисунок 13) и намагниченности насыщения ( $B_s$ , таблицы 3 и 4) на величину коэрцитивной силы (Н<sub>с</sub>, таблицы 3 и 4). В этой связи для 18 состояний исследованных плёнок был проведён регрессионный анализ зависимости  $H_c = f(2R_c, D^{1/2}H_a, M_s)$  с использованием нормализованных величин параметров  $2R_c$ ,  $D^{1/2}H_a$ ,  $M_s$ . В результате был получен полином  $H_c = 68 + 215(2R_c) - 1000$  $291(D^{1/2}H_a) - 154M_s - 63(2R_c)(D^{1/2}H_a) + 264(2R_c)M_s + 277(D^{1/2}H_a)M_s - 443(2R_c)^2$  $+ 93(D^{1/2}H_a)^2 + 76M_s^2$ . Затем был рассчитан вклад  $P_n$  каждого из слагаемых этого полинома,  $P_n = 100(b_n^2/\Sigma b_n^2)$ ,  $n \neq 0$  ( $b_n$  – коэффициенты полинома).  $P_n$ отсортированы по убыванию и по ним построена диаграмма (рисунок 15), отражающая количественный вклад каждого параметра в величину (диаграмма Парето). Из рисунка видно, коэрцитивной силы что в соответствии с главным соотношением MCMA  $H_c \sim K_{eff}^{4} (2R_c)^6 / (M_s A^3)$ , наибольший вклад в Н<sub>с</sub> даёт размер зерна, затем – локальная магнитная анизотропия, затем – их произведения на намагниченность насыщения; эти четыре слагаемых дают более 80% накопленного вклада (рисунок 15).

Полученные в работе результаты свидетельствуют о том, что в нанокристаллических плёнках Fe-Zr-N, в частности на составе  $Fe_{77}Zr_7N_{16}$  после отжига при 500°C, можно получить индукцию насыщения более высокую, чем в объёмных промышленных магнитно-мягких сплавах 79HM и 50H (пермаллои) и в нанокристаллических магнитно-мягких ленточных сплавах FINEMET (рисунок 16). По коэрцитивной силе исследованные плёнки значительно лучше, чем объёмный промышленный магнитно-мягкий сплав 49К2Ф (пермендюр) и сравнимы с пермаллоями, которые, согласно действующему ГОСТ 10160 на прецизионные сплавы, имеют наименьшую статическую коэрцитивную силу среди всех объёмных магнитно-мягких сплавов. Термическая стабильность структуры исследованных плёнок Fe-Zr-N (по крайней мере, до 500°C) превосходит нанокристаллические магнитно-мягкие ленточные сплавы FINEMET (300°C) [9].



Рисунок 15 – Вклады параметров структуры в величину коэрцитивной силы исследованных плёнок



Рисунок 16 – Сравнение величин *B<sub>s</sub>* и *H<sub>c</sub>* исследованных плёнок со свойствами промышленных сплавов 79HM, 50H, 49К2Ф (действующий ГОСТ 10160 на прецизионные сплавы) и FINEMET

# ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

1. Методами прямого и наклонного магнетронного напыления при различных режимах напыления получены нанокристаллические плёнки на основе Fe (с содержанием 0...12 ат.% Zr и 0...16 ат.% N) и проведены вакуумные отжиги плёнок при температурах 400 и 500°C в течение 1 часа. Фазовый состав плёнок после напыления или отжига в зависимости от химического состава и условий получения и отжига представлен различными сочетаниями нанокристаллических ферромагнитных и неферромагнитных фаз: твёрдый раствор ОЦК  $\alpha$ -Fe(Zr,N), Fe<sub>4</sub>N, Fe<sub>2</sub>N, FeZr<sub>2</sub> и ZrN. Отжиги приводят к уменьшению периода кристаллической решётки этой фазы в связи с обеднением твёрдого раствора легирующими элементами. Плёнки характеризуются значительными, в зависимости от химического состава имеющими значения в интервале от -2717 до +1466 МПа.

2. Исследованные плёнки в зависимости от химического и фазового составов и условий напыления и отжигов имеют индукцию насыщения в интервале 0,57-2,12 Тл и коэрцитивную силу 6,5-90 Э в плёнках до отжигов и 0,3-10 и 0,1-6 Э после отжигов при 400 и 500°С, соответственно. Установлена линейная зависимость индукции насыщения  $B_s^{\alpha-Fe(N)}$  от содержания азота в твёрдом растворе  $\alpha$ -Fe(Zr,N):  $B_s^{\alpha-Fe(N)}$  (Тл) = 2.15 - 0,17·*N*, где *N* – ат.% N.

3. В плёнках, полученных прямым напылением, поле локальной магнитной анизотропии и поле магнитной анизотропии стохастического увеличиваются содержания домена немонотонно при увеличении легирующих элементов (от 700 до 1800 Э и от 7 до 220 Э, соответственно). При этом размеры стохастических доменов, измеренные методами корреляционной магнитометрии магнитно-силовой микроскопии, И уменьшаются (от 580±160 до 20±2 нм).

4. Кривые магнитострикции плёнок на подложках измерены разработанным в настоящей работе консольным методом с использованием атомно-силового микроскопа. Впервые, применив метод корреляционной магнитометрии к кривым магнитострикции, зависимость магнитострикции от магнитного поля была описана соотношением  $\lambda \sim \lambda_s (1 - H^{1/2})$ , что дало возможность определить магнитострикцию насыщения. Для плёнок Fe, содержащих 0 или 5 ат.% Zr и 0 или 10 ат.% N, значения магнитострикции насыщения  $\lambda_s$ , находятся в диапазоне (-8...+21)·10<sup>-6</sup>.

5. На основе данных о магнитострикции насыщения, намагниченности насыщения, фазовом составе и структуре на плёнках Fe, содержащих 0 или 5 ат.% Zr и 0 или 10 ат.% N выполнены количественные оценки вкладов в эффективную локальную магнитную анизотропию: магнитокристаллическая  $(4,8\cdot10^5 \text{ эрг/см}^3)$ , локальная магнитоупругая ([0,28-1,6]·10<sup>5</sup> эрг/см<sup>3</sup> вызвана микродеформацией зёрнах), локальная магнитостатическая В  $([3.5-4.2] \cdot 10^5 \text{ spr/cm}^3)$ вызвана неферромагнитными включениями) локальная поверхностная ([0,13-0,67] · 10<sup>5</sup> эрг/см<sup>3</sup> вызвана асимметрией формы неферромагнитных зёрен) магнитные анизотропии.

6. Установлено, что коэрцитивная сила *H<sub>c</sub>* во всех исследованных плёнках определяется полем анизотропии стохастического домена. Как

показано на плёнках Fe, содержащих 0 или 5 ат.% Zr и 0 или 10 ат.% N, макронапряжения вызывают магнитоупругую анизотропию, создающую качественно другой, по своей природе, стохастический магнитный домен и, соответственно, вторую моду  $H_c$  (величиной 127-245 Э против 13-90 Э основной моды  $H_c$ ). Вторая мода коэрцитивной силы установлена и оценена по форме петли магнитного гистерезиса и методом корреляционной магнитометрии.

7. Оценены вклады различных параметров структуры (размер зерна  $2R_c$ , поле локальной магнитной анизотропии  $D^{1/2}H_a$  и намагниченность насыщения  $M_s$ ) в величину коэрцитивной силы. Показано, что исследованные плёнки способны обеспечить комплекс таких свойств, как индукция насыщения  $B_s$  0,9-1,8 Тл и коэрцитивная сила  $H_c$  0,1-0,5 Э, превосходящий комплекс свойств объемных промышленных магнитно-мягких сплавов 79HM, 50H и 49K2Ф, а величину  $B_s$  и термическую стабильность структуры (до 500°C) – превосходящие таковые у нанокристаллических магнитно-мягких сплавов типа FINEMET.

## ПУБЛИКАЦИИ ПО РЕЗУЛЬТАТАМ ДИССЕРТАЦИОННОЙ РАБОТЫ

Статьи в зарубежных и российских рецензируемых журналах, рекомендованных ВАК РФ:

1. Шефтель Е.Н., **Харин Е.В**., Комогорцев С.В. Исследование физической природы магнитомягких свойств нанокристаллических пленок Fe-ZrN // Металлы. – 2011. – №5. – с. 105-112.

2. **Harin E.V.**, Sheftel E.N., Krikunov A.I. Atomic force microscopy measurements of magnetostriction of soft-magnetic films // Solid State Phenomena. – 2012. – Vol. 190. – p. 179-182.

3. Iskhakov R.S., Komogortsev S.V., Sheftel E.N., **Harin E.V.**, Krikunov A.I., Eremin E.V. Magnetization correlations and random magnetic anisotropy in nanocrystalline films  $Fe_{78}Zr_{10}N_{12}$  // Solid State Phenomena. – 2012. – Vol. 190. – p. 486-489.

4. Sheftel E.N., **Harin E.V.** Components of magnetic anisotropy of soft magnetic nanocrystalline Fe-based films // Solid State Phenomena. – 2015. – Vol. 233-234. – p. 619-622.

5. Харин Е.В., Шефтель Е.Н. Микромагнитная структура магнитомягких нанокристаллических плёнок на основе Fe // Физика металлов и металловедение. – 2015. – том 116. – вып. 8. – с. 795-802.

6. Шефтель Е.Н., Теджетов В.А., **Харин Е.В.**, Кирюханцев-Корнеев Ф.В., Титова А.О. Фазовое состояние, структура и магнитные свойства плёнок Fe – Zr – N, полученных магнетронным распылением нагретой мишени // Перспективные материалы. – 2015. - № 12. – с. 54-61.

7. Sheftel E.N., **Harin E.V.**, Tedzhetov V.A., Kiryukhantsev-Korneev Ph.V., Levashov E.A., Perov N.S., Titova A.O. Magnetic structure and magnetic properties of nanocrystalline and amorphous Fe-Zr-N films // Physica B: Physics of Condensed Matter. – 2016. – Vol. 494. – p. 13-19.

8. Sheftel E.N., Tedzhetov V.A., **Harin E.V.**, Kiryukhantsev-Korneev F.V., Usmanova G.Sh. High-induction nanocrystalline soft magnetic  $Fe_XTi_YB_Z$  films prepared by magnetron sputtering // Physica Status Solidi C: Current topics in solid state physics. – 2016. – P. 1-7. – DOI: 10.1002/pssc.201600107 (в печати).

9. Шефтель Е.Н., **Харин Е.В.**, Теджетов В.А., Усманова Г.Ш., Крикунов А.И. Наведенная магнитная анизотропия в нанокристаллических пленках FeZrN, полученных наклонным магнетронным напылением // Металлы. – 2016. – №5. – с. 54-60.

#### Список использованных источников

1. Herzer G. Modern soft magnets: Amorphous and nanocrystalline materials // Acta Materialia. – 2013. - Vol. 61. - P. 718-734.

2. Sheftel E.N. Soft magnetic nanocrystalline films of alloys of Fe-refractory interstitial phase for application in devices for magnetic recording // Inorg. Mater.: Appl. Res. – 2010. - Vol. 1. - P. 17-24.

3. Zhong X., Phuoc N.N., Liu Y., Ong C.K. Employment of Co underlayer and oblique deposition to obtain high resonance frequency and excellent thermal stability in FeCo thin films // J. Magn. Magn. Mat. – 2014. – Vol. 365. – P. 8-13; Тикадзуми С. Физика ферромагнетизма. Магнитные характеристики и практические применения: Пер. с японского А.И. Леонова по ред. д.ф.-м.н. проф. Р.В. Писарева. – М.: Мир, 1987, с. 62-110.

4. Iskhakov R.S., Komogortsev S.V. Magnetic Microstructure of Amorphous, Nanocrystalline, and Nanophase Ferromagnets // Physics of Metals and Metallography. - 2011. - Vol. 112. - P. 666-681.

- 5. Wei D. Micromagnetics and Recording Materials. Springer. 2012. 110 p.
- 6. Вонсовский С.В., Шур Я.С. Ферромагнетизм. М.-Л.: ОГИЗ. 1948. 816 с.

7. Chen Ch., Kitakami O., Okamoto S., Shimada Yu. Surface anisotropy in giant magnetic coercivity effect of cubic granular  $FeCo/SiO_2$  and  $NiCo/SiO_2$  films: A comparison with Néel's theory // J. Appl. Phys. - 1999. - Vol. 86. - P. 2161-2165.

8. Kobayashi S., Takahashi H., Kamada Ya. Evaluation of case depth in induction-hardened steels: Magnetic hysteresis measurements and hardness-depth profiling by differential permeability analysis // J. Magn. Magn. Mat. - 2013. - Vol. 343. - P. 112-118.

9. Yoshizawa Y., Oguma S., Yamauchi K. New Fe-based soft magnetic alloys composed of ultrafine grain structure // J. Appl. Phys. – 1988. – Vol. 64. – P. 6044-6046.